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Abstract
We construct a q-difference operator that lifts the continuous q-Hermite
polynomials Hn(x| q) of Rogers up to the continuous big q-Hermite
polynomials Hn(x; a| q) on the next level in the Askey scheme of basic
hypergeometric polynomials. This operator is defined as Exton’s q-exponential
function εq(aqDq) in terms of the Askey–Wilson divided q-difference operator
Dq and it represents a particular q-extension of the standard shift operator
exp

(
a d

dx

)
. We next show that one can move two steps more upwards in order

first to reach the Al-Salam–Chihara family of polynomials Qn(x; a, b | q), and
then the continuous dual q-Hahn polynomials pn(x; a, b, c| q). In both these
cases, lifting operators, respectively, turn out to be convolution-type products of
two and three one-parameter q-difference operators of the same type εq(aqDq)

at the initial step. At each step, we also determine q-difference operators that
lift the weight function for the continuous q-Hermite polynomials Hn(x| q)

successively up to the weight functions for Hn(x; a| q), Qn(x; a, b | q) and
pn(x; a, b, c| q).

PACS numbers: 02.30.Gp, 02.30Tb, 02.30.Vv
Mathematics Subject Classification: 33D45, 39A70, 47B39

1. Introduction

To store the current knowledge of a large number of some well-known special functions,
scientists decided to construct the so-called Askey scheme of hypergeometric orthogonal
polynomials and their q-analogues [1]. Depending on a number of parameters associated with
each polynomial family, they occupy different levels in the Askey hierarchy: for instance, the
Hermite polynomials Hn(x) are on the ground level, the Laguerre and Charlier polynomials
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L(α)
n (x) and Cn(x; a) are one level higher, and so on. Moreover, for some particular or limit

values of the parameters, polynomial families from higher levels reduce to those on the lower
levels (see [2] and references therein). In other words, one may start with a family at any
level in the Askey scheme and then move downwards passing through other known families
until he (she) reaches a family on the ground level. The question then naturally arises as to
whether there is a possibility of moving in opposite direction, from lower levels to higher ones.
Clearly, it would be amounted to determining families of polynomials with a larger number of
parameters from initial ones with less number of parameters.

The goal of this work is to examine the possibility of constructing three explicit examples
of this type by deriving q-difference operators that successively lift the continuous q-Hermite
polynomials Hn(x| q) of Rogers up to the continuous big q-Hermite polynomials Hn(x; a| q)

in the first step, then to the Al-Salam–Chihara polynomials Qn(x; a, b| q) and, finally, to
the continuous dual q-Hahn polynomials pn(x; a, b, c| q) on the higher levels in the Askey
scheme of basic hypergeometric polynomials. The building blocks of these operators are
Exton’s q-exponential functions εq(aqDq) in terms of the Askey–Wilson divided q-difference
operator Dq.

This paper is organized as follows. Section 2 collects some background facts about the
continuous q-Hermite polynomials Hn(x| q) of Rogers, which are then used in section 3 in
order to find an explicit form of the q-difference operator εq(aqDq) that interrelates Hn(x| q)

with the continuous big q-Hermite polynomials Hn(x; a| q). In section 4, we introduce a
convolution-type product operator for two one-parameter q-difference operators εq(aqDq) and
εq(bqDq) and show that this operator lifts the continuous q-Hermite polynomials Hn(x| q)

of Rogers up to the Al-Salam–Chihara polynomials Qn(x; a, b| q). Section 5 discusses
how to build a three-parameter q-difference operator that lifts the continuous q-Hermite
polynomials Hn(x| q) still one step higher to reach the continuous dual q-Hahn polynomials
pn(x; a, b, c| q). In sections 3–5, we also explicitly determine q-difference operators that
lift the weight function of the continuous q-Hermite Hn(x| q) successively up to the weight
functions for the continuous big q-Hermite Hn(x; a| q), for the Al-Salam–Chihara polynomials
Qn(x; a, b | q) and for the continuous dual q-Hahn polynomials pn(x; a, b, c| q). Finally,
section 6 concludes this work with a brief discussion of some further research directions of
interest.

Throughout this exposition, we employ standard notations of the theory of special
functions (see, for example, [1–5]).

2. The ground level: q-Hermite polynomials Hn(x| q)

The continuous q-Hermite polynomials of Rogers for 0 < q < 1 are generated by the three-
term recurrence relations

Hn+1(x|q) = 2xHn(x|q) − (1 − qn)Hn−1(x|q), H0(x|q) = 1, (2.1)

and they are orthogonal on the finite interval −1 � x := cos θ � 1:

1

2π

∫ 1

−1
Hm(x|q)Hn(x|q)w(x|q) dx = δmneq(q

n+1), (2.2)

with respect to the weight function3

w(x|q) := 1

sin θ
(e2iθ ; q)∞(e−2iθ ; q)∞, (2.3)

3 To avoid any confusion of notations, we note that the weight function w(x| q), defined by (2.3) and frequently used
in our exposition, is the same as w̃(x| q) in [1].
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where (a; q)n is the q-shifted factorial, (a; q)0 = 1 , (a; q)n = ∏n−1
k=0 (1 − aq k) , n =

1, 2, 3, . . . , and Jackson’s q-exponential function eq(z) is defined as

eq(z) :=
∞∑

n=0

zn

(q; q)n
= (z; q)−1

∞ , |z| < 1. (2.4)

We also remind the reader of the following Rodrigues-type formula:

Hn(x|q)w(x|q) =
(

q − 1

2

)n

qn(n−1)/4Dn
q(w(x|q)), (2.5)

for the continuous q-Hermite polynomials Hn(x| q) (see (3.26.10) in [1]). The Rogers
generating function for the continuous q-Hermite polynomials Hn(x| q) has the form

∞∑
n=0

Hn(x|q)

(q; q)n
tn = eq(t eiθ )eq(t e−iθ ), |t | < 1. (2.6)

The polynomials Hn(x| q) satisfy the following q-difference equation:

Dq[w(x|q)DqHn(x|q)] = 4q(1 − q−n)

(1 − q)2
Hn(x|q)w(x|q), (2.7)

written in the self-adjoint form (see [1], p 115). The symbol Dq in (2.7) is the conventional
notation for the Askey–Wilson divided q-difference operator (see, for example, [4], p 529),
defined as

Dqf (x) := δqf (x)

δqx
, δqg(eiθ ) := g(q1/2 eiθ ) − g(q−1/2 eiθ ),

f (x) ≡ g(eiθ ), x = cos θ. (2.8)

Merely note that following [6], we find it more convenient for algebraic manipulations to
employ the explicit expression

Dq = q1/2

i(1 − q)

1

sin θ
(ei ln q1/2∂θ − e−i ln q1/2∂θ ) = D1/q, ∂θ ≡ d

dθ
, (2.9)

for Dq (and subsequent q-difference operators) in terms of the shift operators (or the operators
of the finite displacement, see [7]) e±z ∂θ g(θ) := g(θ ±z) with respect to the variable θ . In the
limit as the deformation parameter q ↑ 1, the Askey–Wilson q-difference operator Dq reduces
to the operator of differentiation d

dx
.

Observe that the product rule for the Askey–Wilson operator Dq is known to be of the
form

Dq(f (x)g(x)) = (Aqf (x))(Dqg(x)) + (Dqf (x))(Aqg(x)), (2.10)

where Aq is the so-called averaging difference operator, that is (see, for example, [5]),

(Aqf )(x) = 1
2 (ei ln q1/2∂θ + e−i ln q1/2∂θ )f (x) ≡ cos(ln q1/2∂θ )f (x). (2.11)

In the limit as q ↑ 1, expression (2.10) reduces to the Newton–Leibniz rule of differentiation
for a product of two functions f (x) and g(x).

The Askey–Wilson operator Q− ≡ Dq represents the lowering operator for the
polynomials Hn(x| q) (see formula (3.26.7) in [1])

Q−Hn(x|q) ≡ DqHn(x|q) = 2q(1−n)/2 1 − qn

1 − q
Hn−1(x|q). (2.12)

To verify (2.12), apply the q-difference operator Dq to both sides of the generating function
identity (2.6), use the defining relation (1 − z) eq(z) = eq(qz) for the q-exponential function

3
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(2.4) and then equate the coefficients of the same powers of t on both sides. In the following
sections, we shall repeatedly use an identity

Dk
qHn(x|q) = γn,k(q)Hn−k(x|q), γn,k(q) := qk(k+1)/4

(
2q− n

2

1 − q

)k
(q; q)n

(q; q)n−k

, (2.13)

for integer powers k = 0, 1, . . . , n of the operator Dq, which is not difficult to deduce from
(2.12) by induction on k.

Also note that by a derivation similar to that of (2.12), one has

AqHn(x|q) = q−n/2[Hn(x|q) + (qn − 1)xHn−1(x|q)]. (2.14)

There is no difficulty in verifying that the raising operator Q+ for the polynomials Hn(x| q)

has the form

Q+ ≡ w−1(x|q)Dqw(x|q) = i

(1 − q)sin θ
[e2iθ ei ln q1/2∂θ − e−2iθ e−i ln q1/2∂θ ]

= q−1/2(1 − 2x2)Dq − 4x

1 − q
Aq, (2.15)

and its action on the polynomials Hn(x| q) is (see formula (3.26.9) in [1])

Q+Hn(x|q) = −2q−n/2

1 − q
Hn+1(x|q). (2.16)

It should be pointed out that now (2.16) may also be derived readily from (2.12) and (2.14),
upon using the three-term recurrence relation (2.1).

We conclude this section by the following observation about a q-difference equation,
which governs the continuous q-Hermite polynomials. In the literature on special functions
(see, for example, [1–5]), it is customary to refer to a q-difference equation for the continuous
q-Hermite polynomials Hn(x| q) only in the self-adjoint form (2.7), which includes the weight
function w(x| q) associated with them defined in (2.3). Evidently, one may exclude w(x| q)

from (2.7), by taking into account that

exp (±i ln q1/2∂θ )w(x|q) = −q−1/2 e±2iθw(x|q). (2.17)

But as a result, one arrives at a q-difference equation that admits the factorization (details can
be found in [6]). This means that the continuous q-Hermite polynomials Hn(x| q) actually
satisfy a simpler q-difference equation

DqHn(x|q) = q−n/2Hn(x|q) (2.18)

than the one that follows directly from (2.7) after the elimination of w(x| q). The q-difference
operator Dq in (2.18) is defined as (cf (2.9))

Dq = 1

2i sin θ
(eiθei ln q1/2∂θ − e−iθ e−i ln q1/2∂θ ), ∂θ ≡ d

dθ
, (2.19)

and it may be expressed in terms of the q-difference operators Dq and Aq , defined above in
(2.9) and (2.11), respectively, as

Dq = Aq +
1 − q

2q1/2
xDq.

Then the Pearson-type q-difference equation for the weight function w(x| q) can be written in
the form

D1/qw(x|q) = q−1/2w(x|q), (2.20)

which is an easy consequence of relations (2.17) and definition (2.19). The fact that the two q-
difference operators in (2.18) and (2.20), which govern the continuous q-Hermite polynomials
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Hn(x| q) and their orthogonality weight function w(x| q), respectively, are interrelated by the
formal replacement q ⇒ 1/q is very nontrivial because the former q-difference operator Dq

has polynomial (in the independent variable x) eigenfunctions Hn(x| q), associated with the
discrete spectrum of eigenvalues q− n/2, n = 0, 1, 2, . . . , while the latter, D1/q , has a non-
polynomial eigenfunction w(x| q). This characteristic property of the continuous q-Hermite
polynomials and their weight function turns out to be inherited by all lifting operators in this
work, and that circumstance will be essentially used for establishing explicit forms of the
lifting q-difference operators for the weight functions of other q-polynomial families under
discussion. It is important to realize that the factorization of (2.7) in the form (2.18), revealed
in [6], represented the decisive step in bringing out this significant link between (2.18) and
(2.20).

3. The first level: big q-Hermite polynomials Hn(x; a| q)

The continuous big q-Hermite polynomials Hn(x; a| q) from the next level in the Askey
q-scheme for 0 < q < 1 are generated by the three-term recurrence relations

Hn+1(x; a|q) = (2x − aqn)Hn(x; a|q) − (1 − qn)Hn−1(x; a|q), H0(x; a|q) = 1, (3.1)

and they are explicitly defined by means of the formula

Hn(x; a|q) := a−n
3φ2

(
q−n, a eiθ , a e−iθ

0, 0

∣∣∣∣q; q

)
, x = cos θ. (3.2)

For real values of the parameter a ∈ (−1, 1), they are orthogonal on the finite interval
−1 � x := cos θ � 1

1

2π

∫ 1

−1
Hm(x; a|q)Hn(x; a|q)w(x; a|q)dx = δmneq(q

n+1), (3.3)

with respect to the weight function (cf formula (3.18.2) on p 103 in [1])

w(x; a|q) := 1

sin θ

eq(a eiθ )eq(a e−iθ )

eq(e2iθ )eq(e−2iθ )
≡ eq(a eiθ )eq(a e−iθ )w(x|q), (3.4)

where w(x| q) is the weight function (2.3) for the continuous q-Hermite polynomials of Rogers
Hn(x| q). The weight function w(x; a| q) in (3.3) enables one to represent Hn(x; a| q) in the
form of the following Rodrigues-type formula (see (3.18.12) in [1]):

Hn(x; a|q)w(x; a|q) =
(

q − 1

2

)n

qn(n−1)/4Dn
q(w(x; qn/2a|q)). (3.5)

It should also be recalled that a linear generating function identity for the continuous big
q-Hermite polynomials Hn(x; a| q) is written as (see (3.18.13) in [1])

∞∑
n=0

Hn(x; a|q)

(q; q)n
tn = (at; q)∞eq(te

iθ )eq(t e−iθ ), |t | < 1. (3.6)

The action of the Askey–Wilson divided q-difference operator Dq upon the continuous big
q-Hermite polynomials Hn(x; a| q) does reduce the degree n of the polynomials Hn(x; a| q)

by 1 (similar to the case of (2.12) from the ground level, see (3.18.9) in [1], p 104), i.e.

DqHn(x; a|q) = 2q(1−n)/2 1 − qn

1 − q
Hn−1(x; q1/2a|q). (3.7)

What is important to note about (3.7) is that this action of Dq on Hn(x; a| q) also shifts the
parameter a to q1/2a, so that Dq is actually the lowering shift operator with respect to the

5
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polynomials Hn(x; a| q). As in the case of (2.13), from (3.7), one readily deduces that for
integer powers k = 0, 1, . . . , n of the operator Dq,

Dk
qHn(x; a|q) = γn,k(q)Hn−k(x; qk/2a|q), (3.8)

where γn, k(q) is the same as in (2.13).
The continuous big q-Hermite polynomials Hn(x; a| q) can be expressed in terms of the

continuous q-Hermite polynomials Hn(x| q) of Rogers as

Hn(x; a|q) =
n∑

k=0

qk(k−1)/2

[
n

k

]
q

(−a)kHn−k(x|q), (3.9)

where
[n

k

]
q

is the q-binomial coefficient[
n

k

]
q

:= (q; q)n

(q; q)k(q; q)n−k

=
[

n

n − k

]
q

. (3.10)

The coefficients of Hn−k(x| q) in (3.9) are a special case of the general formula for the
connection coefficients of the Askey–Wilson polynomials, derived in [8] (see also [9],[10]).
Actually, relation (3.9) enables one to construct an explicit form of the q-difference operator,
which lifts the continuous q-Hermite polynomials Hn(x| q) up to the next level, Hn(x; a| q).
Indeed, employing (2.13) on the right-hand side of (3.9), one arrives at the operational formula

Hn(x; a|q) =
n∑

k=0

qk(k−1)/2

[
n

k

]
q

(−a)k

γn,k(q)
Dk

qHn(x|q)

=
n∑

k=0

(−1)kqk(k+1)/4

(q; q)k

(
qn/2 (1 − q)

2q
a

)k

Dk
qHn(x|q), (3.11)

for the continuous big q-Hermite polynomials (3.2) in terms of the continuous q-Hermite
polynomials Hn(x| q) of Rogers. Setting a = q− n

2 b, one finally represents (3.11) as

Hn(x; q− n
2 b|q) = Ln(bqDq |q)Hn(x|q), bq := q − 1

2q
b, (3.12)

where Ln(bq Dq | q) is a q-difference operator which consists of a finite sum of integer powers
of Dq

Ln(bqDq |q) :=
n∑

k=0

ck(q)(bqDq)
k, ck(q) := qk(k+1)/4/(q; q)k. (3.13)

It is worth noting that the polynomials

Ln(z|q) =
n∑

k=0

ck(q)zk = cn(q)zn
3φ1(q

−n/2,−q−n/2, q1/2; 0; q1/2, qn/2/z)

represent the nth partial sum of the power series in z for the Exton q-exponential function
εq(z) on the q-linear lattice4

L∞(z|q) ≡ εq(z) :=
∞∑

k=0

ck(q)zk = 1φ1(0;−q1/2; q1/2,−q1/2z), (3.14)

which was introduced in [11] and has been studied in [12–15].
4 Observe that we find it more convenient to work with the q-exponential function εq(z) of the form (3.14),
which differs from the q-exponential function expq (z) in [3] and [14] by a re-scaling of the argument z, namely,

εq((1 − q)z) ≡ expq (q1/2z). Since the well-known identity (q−1; q−1)n = (−1)n q−n(n+1)/2 (q; q)n implies that

ck(q
−1) = (−1)k ck(q), in our case, ε1/q (z) = εq(−z), provided that either z does not contain any q-dependent factor

or z does include only those q-factors which are symmetric with respect to the replacement q ⇒ 1/q.

6
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Taking into account that the kth power of the lowering operator Dq annihilates Hn(x| q)

whenever k � n + 1, it is convenient to restate (3.12) in its equivalent form as

Hn(x; q− n
2 a|q) = εq(aqDq)Hn(x|q), aq := q − 1

2q
a. (3.15)

We shall call q-difference operators of the type Ln(aq Dq | q) and εq(aq Dq) the lifting
operators, because their action on q-polynomials increases a number of parameters in the
resultant polynomials, which is equivalent to lifting the initial polynomials to higher levels
in the Askey scheme of basic orthogonal polynomials. It is to be emphasized that although
the action of the operator εq(aq Dq) on the q-Hermite polynomials Hn(x| q) is the same as
of its truncated counterpart Ln(aq Dq | q) in (3.12), the motivation for writing down (3.15)
should be clear: it is actually the entire operator εq(aq Dq) that enables one to construct lifting
q-difference operators for such non-polynomial functions in the independent variable x as
orthogonality weight functions for q-polynomial families under discussion.

Since the q-exponential function εq((1 − q) x) reduces to e x in the limit as q ↑ 1, from
(3.13) and (3.14), it is evident that

lim
q↑1

εq(aqDq) = exp

(
−a

2

d

dx

)
, (3.16)

and the operator εq (aq Dq) can therefore be regarded as a particular q-extension of the standard
shift operator by − a/2.

It is well known that in the limit as q ↑ 1, the continuous big q-Hermite polynomials
Hn(x; a| q) reduce to the ordinary Hermite polynomials Hn(x) with shifted argument (see
(5.18.2) in [1]):

lim
q↑1

κ−nHn(κx; 2κa|q) = Hn(x − a), κ :=
√

1 − q

2
.

In view of (3.16), the same limit follows from (3.15) at once.
Let us also recall here that the q-exponential function εq(z) satisfies the q-difference

equation [13, 15]

εq(q
−1/2z) − εq(q

1/2z) = zεq(z), (3.17)

which will be essentially used for treating the problem at hand in what follows.
It now remains only to verify, as the consistency check of the approach under discussion,

that by applying the appropriate q-difference operator on the three-term recurrence relation
(2.1) and the weight function (2.3) for the continuous q-Hermite polynomials Hn(x| q), one
really obtains the corresponding recurrence relation (3.1) and the weight function (3.4) for the
continuous big q-Hermite polynomials Hn(x; a| q), respectively.

To prove the first part of this statement, we apply to both sides of the recurrence relation
(2.1) the q-difference operator εq(q

(n+1)/2 aq Dq). Then, on the left-hand side of (2.1), one
gets, by definition (3.15), that

εq(q
(n+1)/2aqDq)Hn+1(x|q) = Hn+1(x; a|q). (3.18)

Let us now evaluate the second term on the right-hand side of (2.1):

(1 − qn)εq(q
(n+1)/2aqDq)Hn−1(x|q)

≡ (1 − qn)εq(q
(n−1)/2qaqDq)Hn−1(x|q) = (1 − qn)Hn−1(x; qa|q). (3.19)

Finally, in order to evaluate the first term εq(q
(n+1)/2 aq Dq)(2x Hn(x| q)) on the right-

hand side of (2.1), it is instructive to first prove the following ancillary operator identity:

Dk
q(xHn(x|q)) =

[
q−n/2 1 − qk

1 − q
+ qk/2xDq

]
Dk−1

q Hn(x|q), k = 1, 2, 3, . . . . (3.20)

7
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Use the product rule (2.10) and readily verified relations Aq x = 1
2 (q1/2 + q−1/2)x and

Dq x = 1 to check that (3.20) is true for k = 1. We now assume that (3.20) is valid for
some integer value of k and evaluate, by repeatedly employing (2.13), the following:

Dk+1
q (xHn(x|q)) ≡ DqD

k
q(xHn(x|q))

= Dq

[
q−n/2 1 − qk

1 − q
+ qk/2xDq

]
Dk−1

q Hn(x|q)

= q−n/2 1 − qk

1 − q
Dk

qHn(x|q) + qk/2Dq

(
xDk

qHn(x|q)
)

= q−n/2 1 − qk

1 − q
Dk

qHn(x|q) + qk/2γn,k(q)Dq(xHn−k(x|q))

= q−n/2 1 − qk

1 − q
Dk

qHn(x|q) + qk/2γn,k(q)[q−(n−k)/2 + q1/2xDq]Hn−k(x|q)

= q−n/2 1 − qk

1 − q
Dk

qHn(x|q) + qk/2[q−(n−k)/2 + q1/2xDq]Dk
qHn(x|q)

= q−n/2

[
1 − qk

1 − q
+ qk

]
Dk

qHn(x|q) + q(k+1)/2xDk+1
q Hn(x|q)

=
[
q−n/2 1 − qk+1

1 − q
+ q(k+1)/2xDq

]
Dk

qHn(x|q). (3.21)

This completes the proof of the identity (3.20) by induction on k. �
We are now in a position to evaluate the first term on the right-hand side of (2.1):

εq(q
(n+1)/2aqDq)(2xHn(x|q)) = 2

∞∑
k=0

ck(q)[q(n+1)/2aqDq]k(xHn(x|q))

= 2xHn(x|q) + 2
∞∑

k=1

ck(q)[q(n+1)/2aq]kDk
q(xHn(x|q))

= 2xHn(x|q) + 2
∞∑

k=1

ck(q)[q(n+1)/2aq]k
[
q−n/2 1 − qk

1 − q
+ qk/2xDq

]
Dk−1

q Hn(x|q)

= 2x

[
1 +

∞∑
k=1

ck(q)(qn/2qaqDq)
k

]
Hn(x|q) − a

∞∑
k=1

ck−1(q)(qn/2qaqDq)
k−1Hn(x|q)

= (2x − a)εq(q
n/2qaqDq)Hn(x|q) = (2x − a)Hn(x; qa|q), (3.22)

where, at the penultimate step, we have used the two-term recurrence relation (1−qk) ck(q) =
qk/2 ck−1(q) for the coefficients ck(q) in (2.13). Collecting all three terms (3.18), (3.19) and
(3.22), one arrives at the relation

Hn+1(x; a|q) = (2x − a)Hn(x; qa|q) − (1 − qn)Hn−1(x; qa|q), (3.23)

which does not quite form a three-term recurrence relation for it actually mixes two big q-
Hermite polynomials with distinct parameters a and qa. At this stage, it becomes crucial
that the key property (3.17) of the q-exponential function εq(z) turns out to be sufficient for
separating them and thus arriving at the three-term recurrence relation with a single parameter.
Indeed, by definition (3.15),

εq(q
n/2qaqDq |q)Hn(x|q) = Hn(x; qa|q).

8
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On the other hand, from (3.17), with z = q
n+1

2 aq Dq and then from (2.12), it follows that

εq(q
n
2 qaqDq)Hn(x|q) = [εq(q

n
2 aqDq) − q

n+1
2 aqDqεq(q

n+1
2 aqDq)]Hn(x|q)

= Hn(x; a|q) + a(1 − qn)εq(q
(n+1)/2aqDq)Hn−1(x|q)

= Hn(x; a|q) + a(1 − qn)Hn−1(x; qa|q).

Consequently,

Hn(x; qa|q) = Hn(x; a|q) + a(1 − qn)Hn−1(x; qa|q),

and, therefore,

Hn+1(x; a|q) = Hn+1(x; qa|q) − a(1 − qn+1)Hn(x; qa|q). (3.24)

Upon equating the right-hand sides of (3.23) and (3.24), one finally arrives at the three-term
recurrence relation (3.1) for the continuous big q-Hermite polynomials with the parameter qa.

We now shift our attention to the weight functions w(x| q) and w(x; a| q) in the
orthogonality relations (2.2) and (3.3) for the continuous q-Hermite polynomials Hn(x| q)

of Rogers and the continuous big q-Hermite polynomials Hn(x; a| q), respectively. Our task
is to directly verify that not only the polynomials Hn(x| q) and Hn(x; a| q) are interrelated,
but their weight functions w(x| q) and w(x; a| q) are connected as well. It is natural to look
for such a lifting q-difference operator in the form εq (κ aq Dq), where aq := a (q − 1)/2 q

as in (3.15) and κ is some constant factor, which will be determined from the requirement
that εq (κ aq Dq)w(x| q) = w(x; a| q). To this end, use the Rodrigues-type formula (2.5) and
evaluate, by employing the generating function identity (2.6) for the continuous q-Hermite
polynomials Hn(x| q), the following:

εq(κaqDq)w(x|q) =
∞∑

n=0

cn(q)(κaq)
n
(
Dn

qw(x|q)
)

= w(x|q)

∞∑
n=0

cn(q)

(
2κaq

q − 1

)n

q−n(n−1)/4Hn(x|q)

= w(x|q)

∞∑
n=0

(κa)n

qn/2(q; q)n
Hn(x|q) = eq(a eiθ )eq(a e−iθ )w(x|q) ≡ w(x; a|q), (3.25)

provided that the constant κ is chosen to be equal to q1/2. This proves that the q-difference
operator εq(q

1/2aq Dq) does turn the weight function w(x| q) for the continuous q-Hermite
polynomials Hn(x| q) of Rogers into the weight function w(x; a| q) for the continuous big
q-Hermite polynomials Hn(x; a| q) in the orthogonality relation (3.3).

We conclude this section with the following remark, which is worthy of attention. Since
the identity (3.25) can be rewritten as εq(aq Dq)w(x| q) = w(x; q−1/2a| q), it is clear why
the additional factor κ = q1/2 appears in the argument of the Exton q-exponential function in
(3.25): the operator εq(q

1/2aq Dq) turns the weight function w(x| q) directly into the weight
function w(x; a| q), without shifting the parameter a. This means that once the operator
Ln(aq Dq | q) in (3.12) (or, equivalently, the operator εq(aq Dq) in (3.15)), which lifts the
continuous q-Hermite polynomials Hn(x| q) up to the continuous big q-Hermite polynomials
Hn(x; a| q), is known, one determines an operator, which interrelates the corresponding
weight functions w(x| q) and w(x; a| q), by simply adding the factor q1/2 into its argument.
What should be noted is that the additional factor q1/2 makes the operator Ln(q

1/2aqDq | q)

(and, consequently, the operator εq(q
1/2aq Dq)) actually symmetric with respect to the change

q ⇒ 1/q of the base q, that is,

{Ln(q
1/2aqDq |q)}q⇒1/q = Ln(q

1/2aqDq |q). (3.26)

9
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This can be readily verified by bearing in mind that the Askey–Wilson operator Dq is symmetric,
i.e. Dq = D1/q , whereas the factor q1/2aq ≡ (q − 1) a/2 q1/2 changes its sign under the
replacement q ⇒ 1/q (cf footnote 4). But it is important to stress that such a simple
connection between the two q-difference operators, Ln(aq Dq | q) in (3.12) and εq(q

1/2aq Dq)

in (3.25), exists only in the case of the one-parameter family of q-polynomials Hn(x; a| q),
discussed in this section. As will be clear from the remaining sections, when considering
q-polynomial families with two or more parameters, one has to define lifting operators in
the form of some convolution-type products of two or more, respectively, one-parameter q-
difference operators like Ln(aq Dq | q) and εq(aq Dq). As it will become clear in what follows,
these convolution-type q-difference operators turn out to be lacking symmetry with respect
to the replacement q ⇒ 1/q of the base q, so that to interrelate two or more parametric
extensions of the one-parameter, lifting operators Ln(aq Dq | q) and εq(q

1/2aq Dq) one step
further will be necessary: to replace the base q in the formers by 1/q.

4. The second level: Al-Salam–Chihara polynomials Qn(x; a, b| q)

The Al-Salam–Chihara q-polynomials Qn(x; a, b| q) from the next level in the Askey q-
scheme depend on two parameters a and b (in addition to the base q) and they are explicitly
given as

Qn(x; a, b|q) := (ab; q)n

an 3φ2

(
q−n, a eiθ , a e−iθ

ab, 0

∣∣∣∣q; q

)
, x = cos θ. (4.1)

For 0 < q < 1, these polynomials can be generated by the three-term recurrence relations of
the form

Qn+1(x; a, b|q) = [2x − (a + b)qn]Qn(x; a, b|q) − (1 − qn)(1 − abqn−1)Qn−1(x; a, b|q),

Q0(x; a, b|q) = 1. (4.2)

If a and b are real or complex conjugates and max(|a|, |b|) < 1, they are orthogonal on the
finite interval −1 � x := cos θ � 1:

1

2π

∫ 1

−1
Qm(x; a, b|q)Qn(x; a, b|q)w(x; a, b|q)dx = eq(q

nab)eq(q
n+1)δmn, (4.3)

with respect to the weight function (cf formula (3.8.2) on p 80 in [1])

w(x; a, b|q) := |eq(a eiθ )eq(b eiθ )|2w(x|q), (4.4)

where w(x| q) is the weight function (2.3) for the continuous q-Hermite polynomials of Rogers
Hn(x| q). In this work, we assume that the parameters a and b are real and max(|a|, |b|) < 1.

The Rodrigues-type formula for the polynomials Qn(x; a, b| q) in terms of the weight
function (4.4) is of the form (see (3.8.12) in [1])

Qn(x; a, b|q)w(x; a, b|q) =
(

q − 1

2

)n

qn(n−1)/4Dn
q(w(x; qn/2a, qn/2b|q)). (4.5)

It should also be recalled that a linear generating function identity for the Al-Salam–Chihara
q-polynomials Qn(x; a, b| q) is written as (see (3.8.13) in [1])

∞∑
n=0

Qn(x; a, b|q)

(q; q)n
tn = (at, bt; q)∞eq(te

iθ )eq(te
−iθ ), |t | < 1, (4.6)

where we have used the conventional notation (a1, a2, . . . , ak ; q)n := ∏k
j=1(aj ; q)n for

products of q-shifted factorials. Similar to the preceding case (3.7), the Askey–Wilson

10
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operator Dq is a lowering shift operator for the Al-Salam–Chihara family of q-polynomials
Qn(x; a, b| q) of the form (see (3.8.9) in [1])

DqQn(x; a, b|q) = 2q(1−n)/2 1 − qn

1 − q
Qn−1(x; q1/2a, q1/2b|q), (4.7)

and an induction argument using (4.7) results in the identity

Dk
qQn(x; a, b|q) = γn,k(q)Qn−k(x; qk/2a, qk/2b|q), (4.8)

with the same constants γn, k(q) as in (2.13).
The Al-Salam–Chihara polynomials Qn(x; a, b| q) are symmetric with respect to the

parameters a and b; when one of them vanishes, they reduce to the continuous big q-Hermite
polynomials Hn(x; a| q), that is, Qn(x; a, 0| q) = Hn(x; a| q). For general values of the
parameters a and b, these two families are interrelated as [8],[16]

Qn(x; a, b|q) =
n∑

k=0

qk(k−1)/2

[
n

k

]
q

(−a)kHn−k(x; b|q). (4.9)

To construct an operator, which lifts the continuous q-Hermite polynomials Hn(x| q) up
to the Al-Salam–Chihara polynomials Qn(x; a, b| q), it is necessary to first employ (3.8) and
then (3.12) on the right-hand side of (4.9), in order to obtain

Qn(x; a, b|q) =
n∑

k=0

qk(k−1)/2

[
n

k

]
q

(−a)k

γn,k(q)
Dk

qHn(x; q−k/2b|q)

=
n∑

k=0

(−1)kqk(k+1)/4

(q; q)k

(
qn/2 (1 − q)

2q
a

)k

Dk
qHn(x; q−k/2b|q)

=
n∑

k=0

ck(q)(qn/2aqDq)
kHn(x; q−k/2b|q)

=
n∑

k=0

ck(q)(qn/2aqDq)
kLn(q

(n−k)/2bqDq |q)Hn(x|q), (4.10)

where aq = (q − 1) a/2q and bq = (q − 1) b/2q, as before, and the polynomials Ln(z| q) are
defined in (3.13). One thus arrives at the required operator form for the Al-Salam–Chihara
polynomials Qn(x; a, b| q) in terms of the continuous q-Hermite polynomials Hn(x| q) of
Rogers:

Qn(x; q−n/2a, q−n/2b|q) =
n∑

k=0

ck(q)(aqDq)
kLn(q

−k/2bqDq |q)Hn(x|q). (4.11)

Naturally, when b = 0, this identity exactly coincides with the case (3.12) from the level
with one parameter a. Moreover, from the same identity (3.12), one could anticipate that
in the case with two parameters, an appropriate lifting q-difference operator should be some
composition of two operators, εq (aq Dq) and εq (bq Dq). But the point is that Exton’s q-
exponential function εq(z) does not satisfy a simple addition formula e x+y = e xe y for the
ordinary exponential function e x . Instead, one has (cf formula (14) in a paper by Rahman
[14])

εq(x)εq(y) =
∞∑

n=0

cn(q)xn
(
−y

x
q(1−n)/2; q

)
n
.

11
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Meanwhile, the q-exponential function εq(x + y) can be represented as

εq(x + y) =
∞∑

n=0

q−n(n−3)/4

(q; q)n
(−x)n

(
1 +

y

x
; q

)
n
εq(q

−n/2x), (4.12)

with the aid of the inverse Rothe’s expansion [17] (see also p 491 in [4])

xn =
n∑

k=0

(−q−n)kqk(k+1)/2

[
n

k

]
q

(x; q)k.

Identity (4.11) actually determines a product rule of convolution type for the two
operators Ln(aq Dq | q) and Ln(bq Dq | q) (and, consequently, for the operators εq (aq Dq)

and εq (bq Dq)), which enables one to explicitly construct a q-difference operator, lifting
the continuous q-Hermite polynomials Hn(x| q) from the ground level to the Al-Salam–
Chihara polynomials Qn(x; a, b| q) on the second level in the Askey q-scheme. Indeed, let us
define a convolution-type symmetric (with respect to the interchange x ↔ y) product of two
polynomials Ln(x| q) and Ln(y| q) of the form (cf formula (4.11))

Ln(x, y|q) ≡ (Ln(x|q) · Ln(y|q))c :=
n∑

k=0

ck(q)xkLn(q
−k/2y|q)

=
n∑

k=0

ck(q)xk

n∑
l=0

cl(q)(q−k/2y)l. (4.13)

In the limit as n → ∞, this definition yields a convolution-type symmetric product of two
q-exponential functions εq(x) and εq(y) of the form

Eq(x, y) ≡ (εq(x) · εq(y))c :=
∞∑

n=0

ε(n)
q (0)

xn

n!
εq(q

−n/2y)

=
∞∑

n=0

cn(q)xnεq(q
−n/2y), (4.14)

where ε(n)
q (0) = {

dn

dxn εq(x)
}

x=0 and, for notational simplicity in the main results, we have
denoted this product as Eq(x, y), i.e. Eq(x, y) ≡ L∞(x, y| q). One then readily verifies that

Eq(aqDq, bqDq)Hn(x|q) =
∞∑

k=0

ck(q)(aqDq)
kεq(q

−k/2bqDq)Hn(x|q)

=
∞∑

k=0

ck(q)(aqDq)
k

∞∑
j=0

cj (q)(q−k/2bqDq)
jHn(x|q)

=
n∑

k=0

ck(q)(aqDq)
k

n∑
j=0

cj (q)(q−k/2bqDq)
jHn(x|q)

=
n∑

k=0

ck(q)(aqDq)
kLn(q

−k/2bqDq |q)Hn(x|q)

≡ Ln(aqDq, bqDq |q)Hn(x|q) = Qn(x; q−n/2a, q−n/2b|q), (4.15)

whilst bearing in mind that the kth power of the lowering operator Dq annihilates Hn(x| q)

whenever k � n + 1 and using the identity (4.11) at the last step.
Once the q-difference operator Eq(aq Dq , bq Dq), lifting the continuous q-Hermite

polynomials Hn(x| q) up to the Al-Salam–Chihara polynomials Qn(x; a, b| q), is explicitly

12
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known, it is not difficult to define an associated operator, which lifts the weight function w(x| q)

for the continuous q-Hermite polynomials (2.3) up to the weight function w(x; a, b| q) for the
Al-Salam–Chihara polynomials (4.4). It turns out that this operator is of the form (cf formula
(3.26) in our remark at the end of section 3)

E1/q(q
1/2aqDq, q

1/2bqDq) ≡ L∞(q1/2aqDq, q
1/2bqDq |q−1)

=
∞∑

n=0

cn(q)(q1/2aqDq)
nεq(q

(n+1)/2bqDq). (4.16)

To prove this assertion, one evaluates, by first using (2.5) and (2.6), and then (3.5) and (3.6),
so that (cf the derivation in (3.25))

E1/q(q
1/2aqDq, q

1/2bqDq)w(x|q) =
∞∑

k=0

ck(q)(q1/2aqDq)
kεq(q

(k+1)/2bqDq)w(x|q)

=
∞∑

k=0

ck(q)(q1/2aqDq)
k

∞∑
j=0

cj (q)(q(k+1)/2bqDq)
jw(x|q)

=
∞∑

k=0

ck(q)(q1/2aqDq)
k

⎛⎝w(x|q)

∞∑
j=0

Hj(x|q)

(q; q)j
(qk/2b)j

⎞⎠
=

∞∑
k=0

ck(q)(q1/2aqDq)
k
(
w(x|q)eq(q

k/2b eiθ )eq(q
k/2b e−iθ )

)

=
∞∑

k=0

ck(q)(q1/2aqDq)
kw(x; qk/2b|q) = w(x; b|q)

∞∑
k=0

ak

(q; q)k
Hk(x; b|q)

= (ab; q)∞w(x; b|q)eq(a eiθ )eq(a e−iθ ) = (ab; q)∞w(x; a, b|q). (4.17)

Observe that the presence of the constant factor (ab; q)∞, on the right-hand side of (4.17),
only reflects the mathematical fact that the commonly used normalization constants for the
weight functions associated with the continuous q-Hermite polynomials Hn(x| q) of Rogers
and the Al-Salam–Chihara polynomials Qn(x; a, b| q) in the orthogonality relations (2.2) and
(4.3), respectively, do not correspond to the same total masses for these two weight functions.
That is to say, the lifting q-difference operator E1/q(q

1/2aqDq, q
1/2bqDq) in (4.17) actually

eliminates this distinction in the normalization constants by sending w(x| q) to the weight
function (ab; q)∞ w(x; a, b| q) with the same value of total mass.

5. The third level: continuous dual q-Hahn polynomials pn(x; a, b, c| q)

The continuous dual q-Hahn polynomials pn(x; a, b, c| q) from the next level in the Askey
q-scheme depend on three parameters a, b and c (in addition to the base q) and they are
explicitly given as

pn(x; a, b, c|q) := (ab, ac; q)n

an 3φ2

(
q−n, a eiθ , a e−iθ

ab, ac

∣∣∣∣q; q

)
, x = cos θ. (5.1)

If a, b and c are real, or one of them is real and the other two are complex conjugates and
max(| a|, | b|, | c|) < 1), the polynomials pn(x; a, b, c| q) are orthogonal on the finite interval
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−1 � x := cos θ � 1

1

2π

∫ 1

−1
pm(x; a, b, c|q)pn(x; a, b, c|q)w(x; a, b, c|q)dx = hnδmn,

hn = (qn+1, abqn, acqn, bcqn; q)−1
∞ , (5.2)

with respect to the weight function (cf formula (3.3.2) on p 69 in [1])

w(x; a, b, c|q) := |eq(a eiθ )eq(b eiθ )eq(c eiθ )|2w(x|q), (5.3)

where w(x| q) is the weight function (2.3) for the continuous q-Hermite polynomials of
Rogers Hn(x| q). In what follows we assume that the parameters a, b and c are real and
max(| a|, | b|, | c|) < 1.

The Rodrigues-type formula for the polynomials pn(x; a, b, c| q) in terms of the weight
function (5.3) is (see (3.3.12) in [1])

pn(x; a, b, c|q)w(x; a, b, c|q) =
(

q − 1

2

)n

qn(n−1)/4Dn
qw(x; q

n
2 a, q

n
2 b, q

n
2 c|q). (5.4)

In a similar vein as in the two preceding cases (3.7) and (4.7), the Askey–Wilson divided q-
difference operator Dq is a lowering shift operator for the continuous dual q-Hahn polynomials
pn(x; a, b, c| q) (see (3.3.9) in [1]), i.e.

Dqpn(x; a, b, c|q) = 2q(1−n)/2 1 − qn

1 − q
pn−1(x; q1/2a, q1/2b, q1/2c|q). (5.5)

Consequently, as in all those cases,

Dk
qpn(x; a, b, c|q) = γn,k(q)pn−k(x; qk/2a, qk/2b, qk/2c|q), k = 0, 1, 2, . . . , (5.6)

with the same constants γn, k(q) as in (2.13).
The continuous dual q-Hahn polynomials pn(x; a, b, c| q) are symmetric with respect to

the parameters a, b and c; when one of them is equated to zero, they reduce to the Al-Salam–
Chihara polynomials Qn(x; a, b| q), that is, pn(x; a, b, 0| q) = Qn(x; a, b| q). For general
values of the parameters a, b and c, these two families are interrelated as [8]

pn(x; a, b, c|q) =
n∑

k=0

Cn,kQk(x; b, c|q), (5.7)

where the connection coefficients

Cn,k = qk(k−n)

[
n

k

]
q

ck−n (ac, bc; q)n

(ac, bc; q)k
2φ1

(
qk−n, 0
acqk

∣∣∣∣q; q

)
. (5.8)

The basic 2φ1-polynomial on the right-hand side of (5.8) can be evaluated as a special case
of the Chu–Vandermonde q-sum for 2φ1(q

−n, b ; c ; q, q) with a vanishing parameter b ([3],
formula (1.5.3) on p 14, see also [18]), that is,

2φ1(q
−n, 0; c; q, q) = qn(n−1)/2 (−c)n

(c; q)n
.

Thus, (5.7) reduces to the relation

pn(x; a, b, c|q) =
n∑

k=0

q(n−k)(n−k−1)/2

[
n

k

]
q

(−a)n−k (bc; q)n

(bc; q)k
Qk(x; b, c|q)

≡
n∑

m=0

qm(m−1)/2

[
n

m

]
q

(−a)m
(bc; q)n

(bc; q)n−m

Qn−m(x; b, c|q)

14
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=
n∑

m=0

(abcqn−1)m
(

q1−n

bc
; q

)
m

[
n

m

]
q

Qn−m(x; b, c|q)

=
n∑

m=0

qm(m−1)/2

[
n

m

]
q

(−a)m(bcqn−1; q−1)mQn−m(x; b, c|q), (5.9)

where, at the last step, we employ the inversion formula

(z; q−1)n = q−n(n−1)/2(−z)n(z−1; q)n,

with respect to the transformation of the base q ⇒ 1/q.
To construct an operator, which lifts the continuous q-Hermite polynomials Hn(x| q) up

to the continuous dual q-Hahn polynomials pn(x; a, b, c| q), it is necessary to first use (4.8)
and then (4.10) on the right-hand side of (5.9), in order to obtain that

pn(x; a, b, c|q) =
n∑

m=0

qm(m−1)/2

γn,m(q)

[
n

m

]
q

(−a)m(qn−1bc; q−1)mDm
q Qn(x; q− m

2 b, q− m
2 c|q)

=
n∑

m=0

(bcqn−1; q−1)mcm(q)(qn/2aqDq)
mQn(x; q−m/2b, q−m/2c|q)

=
n∑

m=0

(bcqn−1; q−1)mcm(q)(qn/2aqDq)
m

×
n∑

k=0

ck(q)(q(n−m)/2bqDq)
kLn(q

(n−m−k)/2cqDq |q)Hn(x|q). (5.10)

Consequently, in the same spirit as in the preceding cases (3.12) and (4.14), we rewrite
(5.10) in the operator form as

pn(x; q−n/2a, q−n/2b, q−n/2c|q) = Ln(aqDq, bqDq, cqDq |q)Hn(x|q), (5.11)

where aq = (q − 1)a/2q, bq = (q − 1)b/2q, cq = (q − 1)c/2q and the q-difference operator
Ln(aq Dq, bq Dq, cq Dq | q) is defined as (cf definition (4.13))

Ln(aqDq, bqDq, cqDq |q)

:=
n∑

k=0

ck(q)(bc/q; q−1)k(aqDq)
kLn(q

−k/2bqDq, q
−k/2cqDq |q). (5.12)

Observe that for the zero values of any of the three parameters a, b and c, the operator identity
(5.11) reduces to the case of the Al-Salam–Chihara polynomials (see the last line in (4.15))
with remaining two non-zero parameters.

Now taking into account that the kth power of the lowering operator Dq annihilates
Hn(x| q) whenever k � n + 1, one can extend the upper limits in all internal sums in (5.11)
from n to infinity. Thus, one arrives at the final desired operator form of the relation
between the continuous dual q-Hahn polynomials pn(x; a, b, c| q) and the continuous q-
Hermite polynomials Hn(x| q):

pn(x; q−n/2a, q−n/2b, q−n/2c|q) = Eq(aqDq, bqDq, cqDq)Hn(x|q), (5.11′)

where, by definition,

Eq(aqDq, bqDq, cqDq) ≡ L∞(aqDq, bqDq, cqDq |q)

=
∞∑

k=0

(
bc

q
; q−1

)
k

ck(q)(aqDq)
kEq(q

−k/2bqDq, q
−k/2cqDq). (5.13)
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Once the q-difference operator Ln(aq Dq, bq Dq, cq Dq | q) (or its equivalent operator
Eq(aq Dq, bq Dq, cq Dq), which lifts the q-Hermite polynomials Hn(x| q) up to the dual q-
Hahn polynomials pn(x; a, b, c| q), is explicitly defined, from the previous cases, we now
know how to determine an associated operator with it, which lifts the weight function w(x| q)

for the q-Hermite polynomials (2.3) up to the weight function w(x; a, b, c| q) for the dual
q-Hahn polynomials (5.3). Indeed, the appropriate q-difference operator is (cf q-difference
operator (4.16))

E1/q(q
1/2aqDq, q

1/2bqDq, q
1/2cqDq) ≡ L∞(q1/2aqDq, q

1/2bqDq, q
1/2cqDq |q−1). (5.14)

To prove this assertion, one evaluates, by using (4.17) in the first step and then the well-known
property eq(q

n z) = (z; q)n eq(z) of Jackson’s q-exponential function eq(z), that

E1/q(q
1/2aqDq, q

1/2bqDq, q
1/2cqDq)w(x|q)

=
∞∑

m=0

cm(q)(bc; q)m(q1/2aqDq)
mE1/q(q

(m+1)/2bqDq, q
(m+1)/2cqDq)w(x|q)

=
∞∑

m=0

cm(q)(bc; q)m(bcqm; q)∞(q1/2aqDq)
mw(x; qm/2b, qm/2c|q)

= (bc; q)∞
∞∑

m=0

cm(q)(q1/2aq)
mDm

q w(x; qm/2b, qm/2c|q)

= (bc; q)∞w(x; b, c|q)

∞∑
m=0

am

(q; q)m
Qm(x; b, c|q)

= (ab, ac, bc; q)∞w(x; b, c|q)eq(a eiθ )eq(a e−iθ )

= (ab, ac, bc; q)∞w(x; a, b, c|q), (5.15)

upon employing (4.6) at the last two steps, followed by (5.3).
As in the relation (4.17) between weight functions w(x| q) and w(x; a, b| q), the presence

of the constant factor on the right-hand side of (5.15) is consistent with the fact that the weight
function w(x; a, b, c| q) is commonly normalized in the orthogonality relation (5.2) to the
constant h0 = (ab, ac, bc, q; q)−1

∞ ; meanwhile, the normalization constant for w(x| q) in
(2.2) is eq(q) ≡ (q; q)−1

∞ ; thus, the constant factor on the right-hand side of (5.15) is exactly
the ratio eq(q)/h0. That is to say, (5.15) can simply be restated as

E1/q(q
1/2aqDq, q

1/2bqDq, q
1/2cqDq)w

(ren)(x|q) = w(ren)(x; a, b, c|q), (5.16′)

provided that the weight functions in this identity are normalized in such a way that total
masses for both of them are now equal to 2π , that is, w(ren)(x| q) := (q; q)∞ w(x| q) and
w(ren)(x; a, b, c| q) := (ab, ac, bc, q ; q)∞ w(x; a, b, c| q).

6. Concluding comments and outlook

To summarize, we have explicitly determined the q-difference operators that provide complete
(i.e. which includes weight functions associated with these polynomials) lift from the
continuous q-Hermite polynomials Hn(x| q) of Rogers successively up to first reach the
continuous big q-Hermite polynomials Hn(x; a| q), then the Al-Salam–Chihara polynomials
Qn(x; a, b| q) and, finally, the continuous dual q-Hahn polynomials pn(x; a, b, c| q) on the
next three levels in the Askey scheme of basic hypergeometric polynomials.
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It has been a part of folklore in the theory of special functions that polynomial families
on the lowest (ground) levels in the Askey hierarchy seem to predetermine properties of
polynomials on all higher levels. For a concrete manifestation in favour of such opinion, we
refer to a paper by Berg and Ismail [19], who formulated a procedure of attaching generating
functions to orthogonality measures. By using this procedure, one may start with the weight
function for the continuous q-Hermite polynomials Hn(x| q) of Rogers and then climb up in
the Askey q-scheme by reaching the weight functions first for Al-Salam–Chihara polynomials
and then for the most general case in this scheme, Askey–Wilson polynomials. It seems that
we have considered a more general approach in this work, which enables one to interconnect
not only weight functions in the Askey q-scheme (as in [19]), but also polynomials themselves.

Of course, it would be of considerable interest to show that by using the same approach,
one can also reach the Askey–Wilson polynomials on the top level in the Askey q-scheme.
But the point is that in attempting to do so, one is confronted by the necessity of evaluating
an intricate non-standard generating function for the continuous dual q-Hahn polynomials
pn(x; a, b, c| q). We are currently searching for a way to overcome this purely technical
difficulty.
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